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ABSTRACT
 
This paper answers the question of whether it is possible to detect 
changes inside epithelium layered structures using a Stochastic 
Decomposition Method (SDM) [1, 2] that models the scattered 
light reflected from the layered structure over an area ( 2-D scan) 
illuminated by an optical sensor (fiber) emitting light at either one 
wavelength or with white light. Our technique correlates the 
differential changes in the reflected tissue texture with the 
morphological and physical changes that occur in the tissue 
occurring below the surface of the structure. This work has great 
potential in detecting changes in mucosal structures and may lead 
to enhanced endoscopy when the disease is developing to the 
below the surface and hence becoming hidden during colonoscopy 
or endoscopic examination. Tests are performed on layered tissue 
phantoms and the results obtained show great effectiveness of the 
model and method in picking up changes in the morphology of the 
layered tissue phantoms occurring below the surface (greater than 
0.6mm deep).  
 

Index Terms— biomedical signal analysis, optical imaging, 
optical signal processing, spectral analysis, stochastic processes. 

1. INTRODUCTION 
Various optical techniques have been developed for early 
diagnosis of epithelial cancer. Detailed reviews of these available 
optical techniques are presented in the literature with analysis of 
their advantages and disadvantages [3]. The motivation behind 
using the optical based techniques is that for the cases of 
malignancy detected at an earlier stage in colorectal cancer, a 5-
year survival in excess of 97% can occur [4]. In recent years 
considerable progress has been made to evaluate subsurface 
structures in biological tissues in vivo. Confocal laser 
endomicroscopy, which is the closest step towards virtual 
histology has lead to the evaluation of the whole mucosal layer 
with an infiltration depth up to 250 μm [5]. Likewise, confocal 
fluorescence endomicroscopy may have the capacity to reach to 
15-100 μm depth of penetration [6]. While those techniques use 
florescent dyes to interrogate subsurface information, other 
researchers are focusing on extracting information from tissue 
layers at different depths using reflected light [7, 8] without the use 
of dyes.  Thus, the ultimate goal is to detect changes in the sub-
epithelial tissue since early cancer development might occur at this 
level, hence attention needs to be focused on detection of 
morphological changes below the surface [9]. In this paper we aim 

to differentiate different tissue morphologies below tissue surface. 
We have previously presented a Stochastic Decomposition Method 
(SDM) model as a plausible model for mucosal tissues [1, 2]. We 
tested the performance of the model, i.e., its ability to differentiate 
different tissue characteristics using simulations and phantom data 
that were designed to mimic dysplasia formation. The reported 
results verified the applicability of the model for differentiation of 
different tissue characteristics [1, 2].  In order to test the sensitivity 
of the model and method to changes occurring below the surface of 
the tissue, we use doubly layered mimicking tissue phantoms 
representing different tissue morphologies at different depths 
below the surface. Our data demonstrates that our SDM model is 
capable of discriminating tissue changes reliably and reproducibly 
below the epithelial surface.   

 
2. BIOLOGICAL MOTIVATION 

Our depth sensitivity analysis is motivated by the biological 
problem of cancer formation in mucosal tissue in the colon from 
scattered light. Human colon is composed of four layers mucosa, 
submucosa, muscularis externa propria and serosa; a schematic  
representation is given in Figure 1 [7]. The light incident on the 
colon surface first interacts with the thin epithelium layer and then 
gets transmitted through the first layer into deeper layers [7]. The 
reflected light due to the epithelium layer (outer layer) is 2-5% of 
the total reflected light [10]. Hence, the scattered light carries 
information from layers below the surface. Early colorectal cancer 
are classified as protruded, superficial elevated, flat, and depressed 
type [11]. Detection of flat and depressed lesions is quite difficult 
during endoscopy [12]. Depressed lesions have high risk of 
submucosal invasion [5]. The average thickness of mucosal layer 
is approximately 400 μm [13], and varies in the range 395-603 μm 
[7]. Since most biological tissues have a multilayered structure, 
depth-resolved measurements are important [14].  

 
Fig. 1. Schematic representation of colon architecture [7]. 
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3. CLASSIFICATION OF LAYERED TISSUE PHANTOMS 
Here we answer the question of whether or not the SDM and its 
parameters are sensitive to phantom structure changes, when the 
changes occur below the surface (greater than 0.6mm) of the 
phantom structure. We consider the parameters extracted from the 
SDM at one wavelength, plus the parametric power spectral 
density (PSD) that is formed based on these estimated SDM 
parameters, and proceed to establish whether or not such 
sensitivity exists based on multi-layered designed phantoms. We 
also generalize the analysis to include the white light case.  
3.1. The Diffuse Model

The SDM model [1, 2] uses reflected light at one specific 
wavelength . SDM method is based on the idea that any regular 
process y(n) can be expressed as a sum of diffuse (d(n)) and 
specular (c(n)) components. For a totally diffuse component d(n) 
(which is the case considered in this paper) is a zero mean 
autoregressive process of order p (AR(p)) process  
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which is driven by zero mean white noise sequence w(n) with 
variance )(2 . The AR process is parameterized by the set 

(b1( , b2( ,…, bp( , )(2 ) = (b( , )(2 ). b(  describes 
the correlation structure (texture) between the points in the data, 
whereas )(2 conveys information about the strength (intensity) 
of the driving noise. The Parametric Power Spectral Density (PSD) 
is defined as: 

            )(),(),( 22fHfS        (3)
To limit the PSD to strictly conveying changes due to texture 
information alone we can normalize the PSD so that the AR(p) 
process under any structure is having )(2 = 1. This is done by 

taking the normalized PSD as )(),(),(ˆ 2fSfS . In 

addition to )(2 and ),(ˆ fS , we also consider the Kolmogorov-
Smirnov (KS) distance D(  [1, 2].  
 
3.2. Metric Based on the AR Parameters for Testing whether 
or not Two Structures Are Similar or Different 

We want to test whether two layered tissue structures, denoted 
here by A and B, and which are interrogated at a wavelength are 
deemed to be the same (i.e., Ho: =  where Ho is the null 
hypothesis) or different (i.e., Ha: where Ha is the alternative 
hypothesis), based on two A-scans (see section 4.1 for how the 
data is collected to form a 1-D signal or A-scan). The estimated 
AR(p) parameters obtained from the two A-scans are and . 
Towards that end we use the following metric statistics 
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The metric |ds, | is bound between 0 and 1, where it assumes the 
value 0 when (B)  (A) ff , and assumes the maximum value of 

1 when either 0  (A)f  or 0  (B)f . Finally, if we consider the 
entire white light spectrum instead of just one wavelength, we 
should expect better performance since different wavelengths have 

different penetration, with larger wavelengths are expected to give 
a higher performance as they penetrate deeper in the tissue. Of 
course, this also depends on the scattering/absorption coefficient of 
the tissue.  If the coefficient is really high, then the signal will be 
so attenuated that the reflected intensity will be so weak. 
 For the white light case the metric for )(2  and D( become 

,sd (Eq. 5) evaluated at max :  ,sd ( max ). where max is the 

wavelength at which | ,sd | assumes its maximum value; and for 

the normalized spectrum ),(ˆ fS it is   
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where maxf and max are the frequency and wavelength pair at which 
| ,sd | assumes its maximum value. When | ,sd | is close to 0, then 
this will support the hypothesis that the two structures are seen as 
basically the same based on the data examined, whereas | ,sd | 
values away from 0, would support the hypothesis that the 
structures are judged to be different. Remember that in the context 
of our problem, structures A and B only differ in their deeper 
(below the surface) layers, but are the same on the outer layers.  So 
when we judge them to be different, in essence we are saying that 
the parameters are sensitive to changes in the deeper layers. 
Finally, it is important to establish what constitutes legitimate 
“away from 0” values and ways of establishing it. ,sd is a statistic 
(a random variable) that is based on estimated parameters from 
finite data (the reflected intensity over a scan). It has a mean value 
E[ ,sd ] and a standard deviation STD[ ,sd ]. Under Ho: = , 

E[ ,sd |Ho] = 0, and a nonzero standard deviation d = 

STD[ ,sd |Ho] which goes to zero as the record size of the A-scan 
gets larger and larger. Given an A-scan from a test structure (say 
structure B) and an A-scan from a nominal structure (say structure 
A), we estimate the test and nominal structure parameters from that 
two A-scans, and for each one of the parameters compute the 

,sd metric.  Then we compare ,sd  to d, and if | ,sd |< d, we 
declare the two structures to be the same (i.e., A = B), otherwise 
we declare them to be different (i.e., ).  The threshold d 
results in a very conservative classification rule, where two 
structures are deemed different if there is so much evidence that 
the two models estimated from the nominal and test data are very 
different. To make the decision independent of which structure is 
considered as the nominal, the classification rule is compared to 
the largest of d,A and d,B, where d,A  is the sample standard 
deviation for ,sd when A is considered as the nominal structure, 

and d,B is for when B is considered as the nominal structure.  
 We determine an approximate value for d using Monte Carlo 
simulations as follows. Given an A-scan from a nominal structure 
(taken as either structure A or structure B), we estimate the AR(p) 
parameters, then we generate Monte Carlo realizations in 
accordance with the estimated AR(p) parameters. For each such 
realization, we re-estimate the parameters. For each one of the 
parameters, we compute the corresponding sample ,sd . Out of all 

the ,sd samples for that parameter, the sample standard deviation 

d is computed. This constitutes the nominal sample standard 
deviation for the metric under the nominal structure (i.e., when Ho 
is in effect) which under white light will be an upper bound for d 
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over all ‘s when the metric ,sd is constructed based on either 

)(2 or D( , and over all ‘s and f’s when the metric ,sd is 

constructed based on ),(ˆ fS . 
3.3. Multi Looks- Multi Scans Case

When multiple A-scans are available, then an alternative metric 
to ds, , , which is based on the estimated histograms associated 
with each of the parameters under structures A and B can be 
computed. From these two histograms one can construct an ROC 
and use the area Az under the ROC curve as a measure of the 
ability of that parameter to discriminate between structures A and 
B based on changes in the inner layer (deep under the surface). 
This measure has been used in our work in [1, 2] to differentiate 
between one layer structures. Details on the calculation of Az are 
given in [1, 2]. We report on the performance of the single 
parameters )(2  and D(  using a permutation method that 
creates additional virtual A-scans from the observed original one. 
Since these two parameters are not affected by the data order, data 
permutation is kosher. This is not the case; however, with regards 
to the parameter ),(ˆ fS  as the correlation structure (the texture) 
is affected by data permutation. 
 
4. PERFORMANCE EVALUATION ON LAYERED TISSUE 

PHANTOMS
4.1. Specifications of Layered Phantoms and Data Collection 

The layered tissue phantoms are created [15] using different 
sizes of polystyrene latex micro spheres (Polysciences Inc). We 
examined micro spheres at diameter sizes of 2 m, 3 m, 4 m and 
10 m.  A gelatin layer is placed in between two types of micro 
spheres of different sizes. The heights of the top and bottom layer 
tissue phantom are approximately 0.6mm each, and the height of 
gelatin layer in the middle is around 0.4mm. The details of 
specifications and creation of layered tissue phantoms are given in 
[15]. We name the samples as N1N2, where N1 is microsphere 
size (in microns) at the bottom layer and N2 is the microsphere 
size at the top layer . A sample structure of the layered tissue 
phantoms are given in Figure 2. 
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Fig. 2. The structure of layered tissue phantoms for samples 0303 
and 0310. 

Phantom data is collected using a probe, a spectrometer, and a 
light source [16]. The sample is illuminated with white-light and 
the reflected light intensities over the white spectrum is collected 
at equal spaced intervals during scanning, using a staging station. 
The details of data collection is explained in our previous work [2]. 
To create an A-scan, the fiber is placed on a XYZ stage, which 
moves the fiber and allows data to be collected at different points 
on the sample. If there are M (for the spectrometer used there were 
1243 values extending the range of 400-800nm) numbers of 
wavelengths that we consider over the white spectrum, then there 
are M numbers of A-scans that are considered, one at each 
wavelength, for each of which the AR(p) parameters are extracted.   
4.2. Performance Evaluation of the Model Parameters based 
on the Distance Metric over the White Spectrum 

In this section we report on the ability of the model parameters 
D( )(2 , and ),(ˆ fS  to differentiate between pairs of 
phantom structures that only differ in their lower layers (i.e., the 
upper layers for the two structures are the same as shown in Figure 
2 over the entire white spectrum using the distance metric 
introduced in Section 3.2. The pairs of structures considered are 
0202-0402, 0404-0204, 0303-1003, and 1010-0310. For each one 
of the 8 structures considered, the standard deviations ( d’s) of 
( ,sd )’s under each structure are computed from 1000 Monte 
Carlo realizations for each structure (see Section 3.2) based on the 
AR(p) (with p set to 5) parameters that are estimated from the A-
scan associated with that structure. For each realization, the model 
parameters are extracted and the distance metric ,sd for each of 

the extracted parameters D( )(2 , and ),(ˆ fS are calculated 
in order to obtain the standard deviations ( d’s). The performance 
of the distance metric as a function of d’s for D( max )( max

2 , 

and ),(ˆ
maxmaxfS are given in Table 1.  As we can see from the 

table, all but one value is below the 2 d threshold (the structure 
pair 0303-1003 for the metric based on ),(ˆ

maxmaxfS parameter, 
which is barely below the 2 d threshold (1.9573 d )). This implies 
that for all the cases, the pairs are classified as different based on 
any one the single model parameters. It is also interesting to 
observe how far away the ,sd values are from the 2 d threshold 

for the D( max and )( max
2 parameters. If we combine the 

classification based on individual parameters, the combined 
distance will be very far away from the 2 d threshold for all cases. 
On overall, the model parameters are able to strongly discriminate 
between structures differing only in their lower layers.  

Table 1. The metric )(, dsd for the features. 

)(, dsd )( maxD )( max
2 ),(ˆ

maxmaxfS

0202-0402 13.539 d  11.725 d  2.0573 d

0404-0204 4.576 d  17.314 d  2.2963 d

0303-1003 5.242 d  31.770 d  1.9573 d

1010-0310 4.162 d  22.577 d  2.1694 d

4.3. Performance Evaluation based on the Distance Metric for 
Multi Scans as Area under ROC curves 

In this section, we report on the performance of 
)(D and )(2  using the permutation method and Az described 

in Section 3.3. From an A-scan at given  we generate additional 
99 A-scans using permutations. From these 100 A-scans, 100 
values for )(2 , and )(D  are computed for that given 
structure at that particular wavelength, and a pair of histograms, 
one for the )(2 parameter, and one for the )(D  parameter, are 
generated. This process is repeated for all 1243 additional 
wavelengths associated with the white spectrum.  When testing a 
pair of structures that only differ in their lower layers, the 
histograms for )(D and )(2 at the interrogating wavelength 
are used to compute the Az for that wavelength. For the white light 
spectrum there will be 1243 possible Az values for that pair of 
structures. We report the mean value of these Az ‘s in Table 2 for 
each of the parameters. We also report on the performance when 
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we optimally combine the two parameters together in accordance 
with the joint likelihood ratio statistics (Neyman Pearson statistics) 
[1, 2]. As we can see from Table 2, the performance is extremely 
strong (Az value close to 1) for the individual parameters in 
particular for the )(2 parameter. The results of classification by 
fusing all the imaging parameter set together yields an overall 
extremely strong performance (Az between 0.980-1.000), showing 
that changes in the lower layer of the layered tissue phantoms are 
reliably detected using the model and method. 

Table 5. Mean Az values for classification for pairs of layered phantoms 
for parameters )(D , )(2 . 

Az for D Az for D Az for ² Az for D+ ²
0202-0402 0.9962 0.9804 0.9986 
0404-0204 0.9804 0.9800 1.0000 
0303-1003 0.9793 0.9804 0.9997 
1010-0310 0.8790 0.9801 1.0000 

 
6. CONCLUSION 

We investigated the ability of our SDM model [1, 2] and its 
parameters in detecting structure changes below the surface by 
comparing between phantoms that had similar structures on their 
upper layers, but different structures in their lower layers. This 
study was motivated by the biological problem of cancer 
formation in mucosal tissue in the colon from scattered light, for 
potential detection of early cancer development where 
morphological changes usually occur below the surface. Our 
technique correlates the differential changes in the reflected tissue 
texture with the morphological and physical changes that occur in 
the tissue occurring below the surface of the structure. 
Methodologies are developed for judging the sensitivity of the 
texture model parameters to changes occurring deep inside the 
structures (greater than 0.6mm deep) from A-scans obtained over 
one wavelength within the white light range (400-800nm). The 
performance of these parameters is shown to be extremely strong 
as reflected by either one of the two metrics considered, ,sd or Az. 
For all pairs of phantom structures considered with structure 
differences in their lower layers only, the distance metric ,sd had 

values well exceeding the 2 d high threshold for all but one value 
for the structure pair, which is barely below the 2 d threshold 
(1.9573 d ). This finding is also collaborated by the extremely 
high values obtained using the second metric Az which returned 
almost perfect classification values (0.98-1.00) when 
discriminating between pairs of tissue mimicking phantoms that 
had different structures only in their lower layers below surface.  
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